
Data Sheet Rev. 1.0 April 2007

9.0-9.6 GHz Low Noise Amplifier

Features

- Frequency Range: 9-9.6 GHz
 Low Noise Figure < 1.3 dB
- ◆ 26.5 dB nominal gain
- ◆ 10 dBm P_{1dB}
- + High IP3
- ◆ Input Return Loss > 12 dB
- ◆ Output Return Loss > 10 dB
- DC decoupled input and output
- ◆ 0.15 µm InGaAs pHEMT Technology
- ◆ Chip dimension: 3.0 x 3.0 x 0.1 mm

Functional Diagram

Typical Applications

- RADAR
- Military
- Test Equipment and sensors
- ◆ Point-to-Point Radios, Point-to-Multi-Point Radios & VSATS

Description

The ASTRA 2142024 is a three stage ultra low noise amplifier that operates from 9.0-9.6 GHz. The LNA features 26.5 dB gain and has a typical mid-band noise figure of 1.3 dB. The LNA has nominal input return losses of 12 dB and output return loss of 10 dB. The nominal P1dB is 10 dBm.

Dual bias technique has been employed to facilitate gain control with gate bias. Circuit ground is provided through vias to backside metallization. The ASTRA 2142024 performs well as a low noise amplifier in receive applications and as a driver or buffer amplifier where high gain, excellent linearity and low power consumption are important.

Absolute Maximum Ratings¹

Parameter	Absolute Maximum	Units
Drain bias voltage (Vd)	+6	volts
RF input power	+10	dBm
Operating temperature	-50 to +85	°C
Storage Temperature	-65 to +150	°C

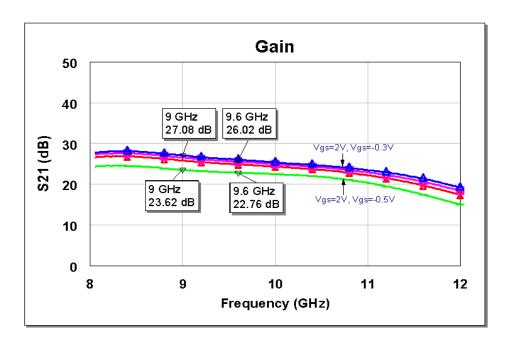
1. Operation beyond these limits may cause permanent damage to the component

Data Sheet Rev. 1.0 April 2007

Electrical Specifications @ T_A = 25 °C, V_{d1} = V_{d2} = V_{d3} = 5V, Vg1=Vg2=Vg3=-0.3 to -0.5V, Z_o =50 Ω

Parameter	Тур	Units
Frequency Range	9.0-9.6	GHz
Gain	26.5	dB
Gain Flatness	<u>+</u> 0.5	dB
Noise Figure	1.3	dB
Input Return Loss	12	dB
Output Return Loss	10	dB
Output Power (P1dB)	+10	dBm
Saturated Output Power (Psat)	+13	dBm
Output Third Order Intercept (IP3)	20	dBm
Supply Current (ld) (Vd1 = Vd2= Vd3 = 5V) (Vg1=Vg2=Vg3= -0.3 to -0.5V)	75	mA

Note:


1. Electrical performance from test fixture measurements

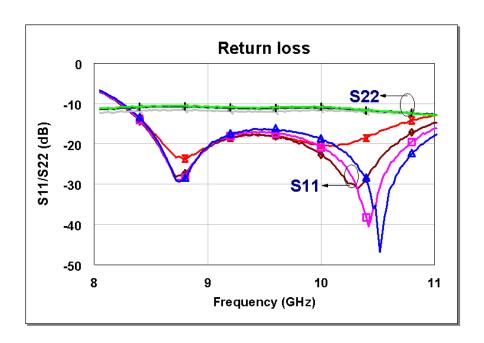
Email: <u>info@astramwp.com</u> URL: <u>www.astramtl.com</u>


Test fixture data

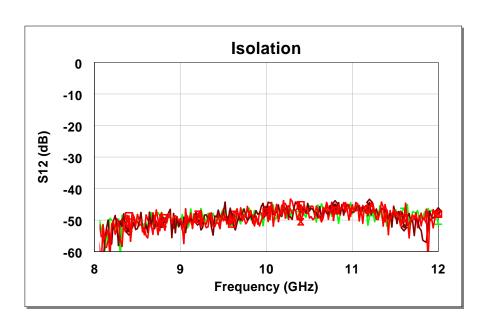
Vd1=Vd2=Vd3=5V, Vg1=Vg2=Vg3=-0.3V to -0.5V. Total Current =75ma, $T_A=25$ °C

Test fixture data

Vd1=Vd2=Vd3=5V, Vg1=Vg2=Vg3=-0.3 to -0.5V. Total Current =75ma, $T_A=25$ °C

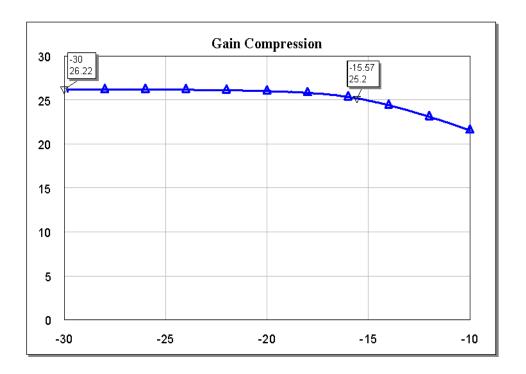


Phone: +91-40-30618000 Fax: +91-40-30618048 Page 3 of 7 Email: info@astramwp.com URL: www.astramtl.com


Test fixture data

Vd1=Vd2=Vd3=5V, Vg1=Vg2=Vg3=-0.3 to -0.5 V. Total Current =75ma, $T_A=25$ °C

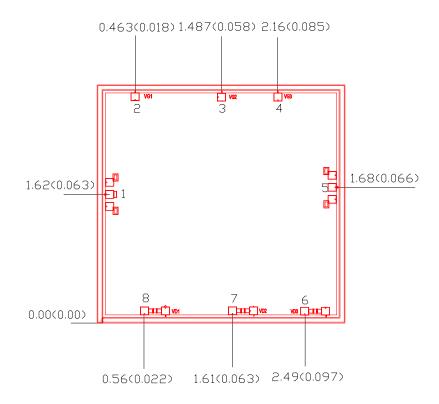
Test fixture data


Vd1=Vd2=Vd3=5V, Vg1=Vg2=Vg3=-0.3 to -0.5 V. Total Current =75ma, T_A =25 °C

Data Sheet Rev. 1.0 April 2007

Test fixture data

Vd1=Vd2=Vd3=5V, Vg1=Vg2=Vg3=-0.3 V. Total Current =75ma, T_A =25 °C


Pout at 1 dB compression = 10 dBm@9 GHz

Phone: +91-40-30618000 Fax: +91-40-30618048 Page 5 of 7 Email: info@astramwp.com URL: www.astramtl.com

Data Sheet Rev. 1.0 April 2007

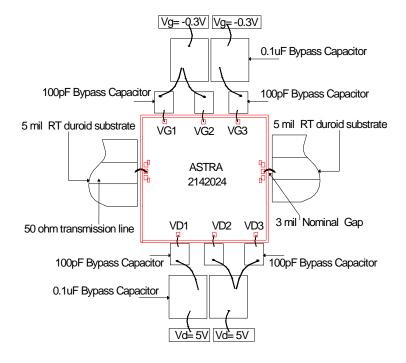
Mechanical Characteristics

Units: Millimeters [Inches]

All RF and DC bond pads are 100µm x 100µm

Note:

Pad 1: RF in


Pad 2: VG1 (-0.3V to -0.5V) Pad 3: VG2 (-0.3V to -0.5V) Pad 4: VG3 (-0.3V to -0.5V)

Pad 5 : RFout Pad 6 : VD3 (5V) Pad 7 : VD2 (5V) Pad 8 : VD3 (5V)

Rev. 1.0 April 2007

Recommended Assembly Diagram

Note:

- 1. Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input and output.
- 2. Two 1 mil (0.0254mm) bond wires of minimum length should be used from chip bond pad to 100pF capacitor.
- 3. Input and output 50 ohm lines are on 5 mil substrate.
- 0.1 μF capacitors may be additionally used as a second level of bypass for reliable operation.

Die attach: Use AuSn (80/20) 1-2 mil. Preform solder.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of 150 - 200µm length of wedge bonds is advised. Ball bonds are also acceptable.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice