

13 – 14.5 GHz 2 Watt Power Amplifier

Features

- ◆ Frequency Range: 13.0 14.5GHz
 - ◆ 33 dBm output Psat
 - ◆ 25 dB Power gain
 - ◆ 27% PAE
 - High IP3
 - ◆ Input Return Loss > 8 dB
 - ◆ Output Return Loss > 15 dB
 - Dual bias operation
 - ◆ No external matching required
 - DC decoupled input and output
 - ◆ 0.5 µm InGaAs pHEMT Technology
 - ◆ Chip dimension: 3.1 x 1.8 x 0.1 mm

Functional Diagram

Typical Applications

- RADAR
- MMDS
- VSAT

Description

The AMT2154041 is a three stage GaAs PHEMT Class AB Power Amplifier MMIC. The PA delivers output power of 33dBm with a small signal gain of 25dB and 27% PAE. The input/output are matched to 50 ohms and the circuit grounds are provided through vias to the backside metallization.

Absolute Maximum Ratings (1)

Parameter	Absolute Maximum	Units
Drain supply voltage (V _d =V _{d1} =V _{d2} =V _{d3})	+9	Volts
Gate supply voltage (V _g =V _{g1} =V _{g2} =V _{g3})	-0.7>V _g >-2.2	Volts
Drain current (I _{dq} =I _{dq1} +I _{dq2} +I _{dq3})	1050	mA
RF input power (RFin at V _d =9V)	20	dBm
Operating temperature	-50 to +80	°C
Storage Temperature	-65 to +150	°C

1. Operation beyond these limits may cause permanent damage to the component

Data Sheet Rev. 1.2 April 2016

Electrical Specifications $^{(1)}$ @ $T_B{=}40^{o}C,\ V_{d1}{=}V_{d2}{=}V_{d3}{=}8V$ $V_{g1}{=}V_{g2}{=}V_{g3}{=}{-}0.85V,\ Z_o{=}50\Omega$

Parameter	Min.	Тур.	Max.	Units
Frequency Range	13.0		14.5	GHz
Gain		25		dB
Gain Flatness		+/- 0.5		dB
Input Return Loss		8		dB
Output Return Loss		15		dB
Output 1dB compression point (P1dB)		+32.5		dBm
Output Saturated Power (Psat)		+33		dBm
Output Third Order Intercept point (OIP3) ¹		42		dBm
PAE ²		27		%
Drain Bias Voltage (V _{d1} , V _{d2} , V _{d3})	-	8,8	9,9	V
Gate Bias Voltage (V _{g1} , V _{g2} , V _{g3})	-1,-1	-0.85,-0.85	-0.7,-0.7	V
Supply Current (I _{dq})	-	0.77	-	А
Supply Current (I _{dsat})	-	0.84	-	А

Note:

- 1. $T_B MMIC$ base temperature
- 2. Measured at output 1dB compression point
- 3. Operating current should be in between I_{dq} and I_{dsat}

Phone: +91-40-30618000 Page 2 of 6 Email: info@astramwp.com URL: www.astramtl.com

Test fixture data

 $V_{d1}=V_{d2}=V_{d3}=8V$, $V_{g1}=V_{g2}=V_{g3}=-0.85V$, Total Current (I_{dq})=770mA, $I_{B}=40$ °C

Phone: +91-40-30618000 Page 3 of 6 Email: info@astramwp.com URL: www.astramtl.com

Test fixture data

 $V_{d1}=V_{d2}=V_{d3}=8V$, $V_{g1}=V_{g2}=V_{g3}=-0.85V$, Total Current (I_{dq})=770mA, I_{B} =40 °C

Data Sheet Rev. 1.2 April 2016

Mechanical Characteristics

Units: millimeters (inches)

Note:

1. All RF and DC bond pads are 100μm x 100μm

2. Pad no. 1 : RF IN

3. Pad no. 17 : 1st stage gate voltage 4. Pad no. 3 : 1st stage drain voltage 5. Pad no. 5,15 : 2nd stage gate voltage Pad no. 6,14 : 2nd stage drain voltage 6. 7. Pad no. 7,13 : 3rd stage gate voltage 8. Pad no. 8,12 : 3rd stage drain voltage

9. Pad no. 10 : RF OUT

Off Chip Components used while recording test fixture data:

Component	Part Number/Description	Vendor
100pF SLC Bypass Capacitor "C1"	D12BV101K5PX/100pF±10%;50V or Equivalent	DLI
0.1uF MLC Capacitor "C2"	04023C105KAT2A/1uF±10%;25V or Equivalent	AVX Corp.
1uF MLC Capacitor "C3"	04023C105KAT2A/1uF±10%;25V or Equivalent	AVX Corp.

Note: Please refer to the assembly diagram given below

Phone: +91-40-30618000
Fax: +91-40-30618345
Page 5 of 6

Email: <u>info@astramwp.com</u>
URL: <u>www.astramtl.com</u>

Data Sheet Rev. 1.2 April 2016

Recommended Assembly Diagram

Note:

- 1. Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input, RF output and from chip bond pad to 100pF capacitor.
- 2. Input and output 50 ohm lines are on 5 mil RT Duroid substrate.
- 3. The bond numbers shown in assembly diagram are as per bond pad numbers printed on the die.
- 4. The RF input & output ports are DC decoupled on-chip.
- 5. Coefficient of thermal expansion matching is recommended for reliability purpose.
- 6. Use high thermal conductive material for die mounting for long term reliability.
- 7. Maintain base plate temperature less than 70 degC under RF operation for optimum performance.

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of 150 - 200µm length of wedge bonds is advised. Single Ball bonds of 250-300µm though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice