

# 5 – 6.3 GHz 2 Watt Power Amplifier

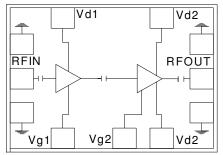
### **Features**

- Frequency Range : 5 6.3GHz
- 33 dBm output P1dB
- 25 dB Power gain
- 30% PAE
- High IP3
- Input Return Loss > 10 dB
- Output Return Loss > 15 dB
- Dual bias operation
- No external matching required
- DC decoupled input and output
- 0.5 μm InGaAs pHEMT Technology
- Chip dimension: 2.5 x 2.4 x 0.1 mm

## **Typical Applications**

- RADAR
- Military & space
- LMDS, VSAT

## Description


The AMT2134021 is a C-band Power amplifier with 33dBm power output. The PA uses 2 stages of amplification and operates in 5 - 6.3 GHz frequency range. The PA features 25 dB of gain with input and output return losses of 10 dB and 15 dB respectively. The PA has a high IP3 of 43dBm and 30% PAE. This feature enables it to be used in the applications requiring efficiency along with linearity. The chip operates with dual bias supply voltage.The die is fabricated using a reliable 0.5µm InGaAs pHEMT technology. The Circuit grounds are provided through vias to the backside metallization.

## Absolute Maximum Ratings (1)

| Parameter                      | Absolute Maximum | Units |
|--------------------------------|------------------|-------|
| Drain bias voltage (Vd)        | +10              | volts |
| Drain current (Idq)            | 1.1              | А     |
| RF input power (RFin at Vd=9V) | 26               | dBm   |
| Operating temperature          | -50 to +85       | °C    |
| Storage Temperature            | -65 to +150      | °C    |

1. Operation beyond these limits may cause permanent damage to the component

# Functional Diagram

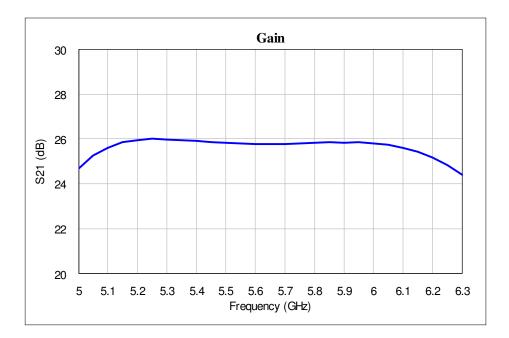


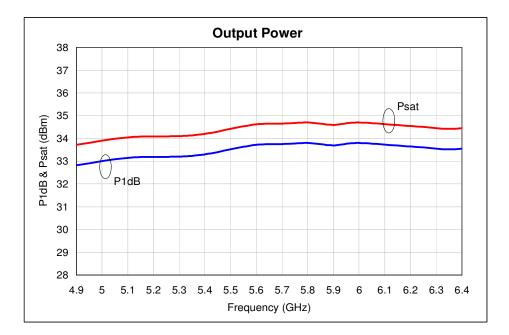


# Electrical Specifications <sup>(1)</sup>@ $T_A = 25 \text{ °C}$ , $V_{d1} = V_{d2} = 8V$ , $V_{g1} = V_{g2} = -1V Z_o = 50 \Omega$

| Parameter                           | Тур.    | Units |
|-------------------------------------|---------|-------|
| Frequency Range                     | 5 - 6.3 | GHz   |
| Gain                                | 25      | dB    |
| Gain Flatness                       | +/-0.5  | dB    |
| Output Power (P1 dB)                | 33      | dBm   |
| Input Return Loss                   | 10      | dB    |
| Output Return Loss                  | 15      | dB    |
| Saturated output power (Psat)       | 34      | dBm   |
| Output Third Order Intercept (IP3)  | 43      | dBm   |
| Power Added Efficiency (PAE)        | 30%     |       |
| Supply Current (I <sub>dq</sub> )   | 800     | mA    |
| Supply Current (I <sub>dsat</sub> ) | 1000    | mA    |

#### Note:

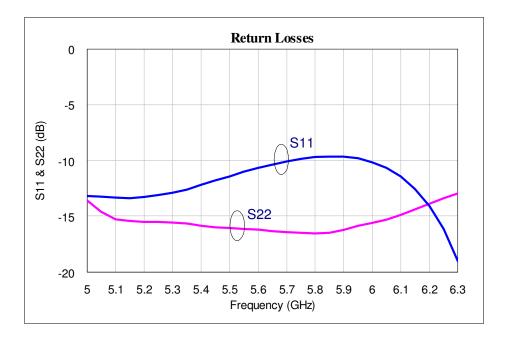

- 1.  $T_B MMIC$  base temperature
- 2. Measured at output 1dB compression point
- 3. Operaing current should be present in between Idq and Idsat.

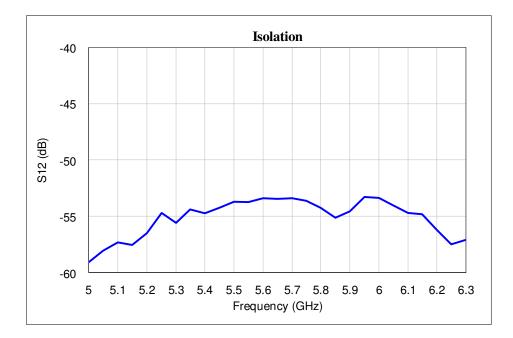



AMT2134021 Data Sheet Rev. 1.1 December 2010

### **Test fixture data**

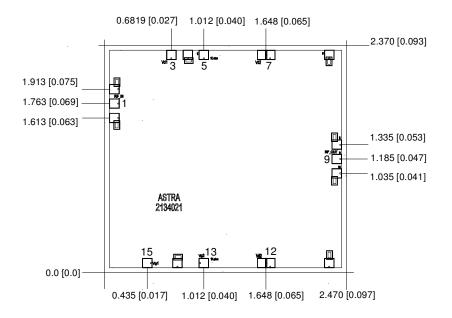
 $V_{d1} = V_{d2} = 8V$ ,  $V_{g1} = V_{g2} = -1V$ , Total Current =800mA,  $T_A = 25 \ ^{\circ}C$ 






### **Test fixture data**


 $V_{d1} = V_{d2} = 8V$ ,  $V_{g1} = V_{g2} = -1V$ , Total Current =800mA,  $T_A = 25 \ ^{\circ}C$ 

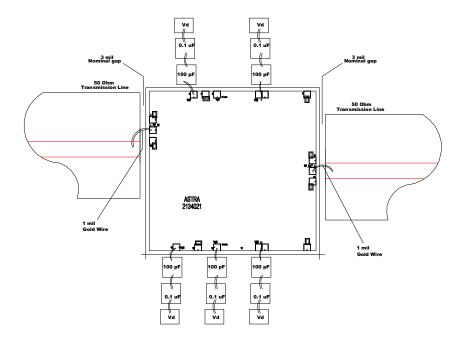






# **Bond Pad Locations**




#### Units: millimeters (inches)

#### Note:

- 1. All RF and DC bond pads are 100µm x 100µm
- 2. Pad no. 1 : RF IN
- 3. Pad no. 3 : 1st stage drain voltage( $V_{d1}$ )
- 4. Pad no. 9 : RF Output
- 5. Pad no. 7,12 : 2nd stage drain voltage( $V_{d2}$ )
- 6. Pad no. 5,13 :  $2^{nd}$  stage gate voltage(V<sub>g2</sub>)
- 7. Pad no. 15 :  $1^{st}$  stage gate voltage (V<sub>g1</sub>)



## **Recommended Assembly Diagram**



#### Note :

- 1. Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input and output.
- 2. Two 1 mil (0.0254mm) bond wires of minimum length should be used from chip bond pad to 100pF capacitor.
- 3. Input and output 50 ohm lines are on 5 mil RT Duroid substrate
- 4. 0.1  $\mu$ F capacitors may be additionally used as a second level of bypass for reliable operation
- 5. The RF input & output ports are DC decoupled on-chip.
- 6. Proper heat sink like Copper tungsten or copper molybdenum to be used for better reliability of chip

**Die attach:** For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

**Wire bonding:** For DC pad connections use either ball or wedge bonds. For best RF performance, use of 150 - 200µm length of wedge bonds is advised. Single Ball bonds of 250-300µm though acceptable, may cause a deviation in RF performance.



GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice