

5 – 6 GHz 10 Watt Power Amplifier

Features

- ◆ Frequency Range: 5 6GHz
- ◆ 40 dBm Output Power
- ◆ 18 dB Power gain
- ◆ 30% PAE
- High IP3
- ◆ Input Return Loss > 12 dB
- ◆ Output Return Loss > 7.5 dB
- Dual bias operation
- ◆ No external matching required
- DC decoupled input and output
- ◆ 0.5 µm InGaAs pHEMT Technology
- ◆ Chip dimension: 5.3 x 5.5 x 0.1 mm

Functional Diagram

Typical Applications

- RADAR
- ◆ Military & space
- LMDS, VSAT

Description

The AMT2134031 is a C-band Power amplifier with 40dBm power output. The PA uses 2 stages of amplification and operates in 5 – 6 GHz frequency range. The PA features 18 dB of gain with input and output return losses of 12 dB and 7.5 dB respectively. The PA has a high IP3 of 47dBm and 30% PAE. This feature enables it to be used in the applications requiring efficiency along with linearity. The chip operates with dual bias supply voltage. The die is fabricated using a reliable 0.5µm InGaAs pHEMT technology. The Circuit grounds are provided through vias to the backside metallization.

Absolute Maximum Ratings (1)

Parameter	Absolute Maximum	Units
Drain bias voltage (Vd)	+10	volts
Drain current (Idq)	4	А
RF input power (RFin at Vd=9V)	33	dBm
Operating temperature	-50 to +85	°C
Storage Temperature	-65 to +150	°C

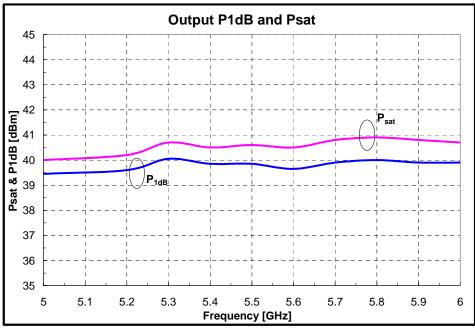
1. Operation beyond these limits may cause permanent damage to the component

Data Sheet Rev. 1.0 January 2009

Electrical Specifications $^{(1)}$ @ T_A = 25 °C, V_{d1} = V_{d2} = 9V, V_{g1} = V_{g2} = -0.9V Z_o =50 Ω

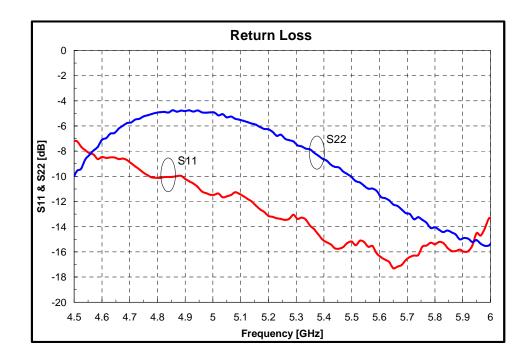
Parameter	Тур.	Units
Frequency Range	5 – 6	GHz
Gain	18	dB
Gain Flatness	+/-1.25	dB
Output Power (P1 dB)	39.5	dBm
Input Return Loss	12	dB
Output Return Loss	7.5	dB
Saturated output power (Psat)	40.5	dBm
Output Third Order Intercept (IP3)	47	dBm
Power Added Efficiency (PAE)	30%	
Supply Current(Idq)	2.9	A
Supply Current (Idsat)	3.5	А

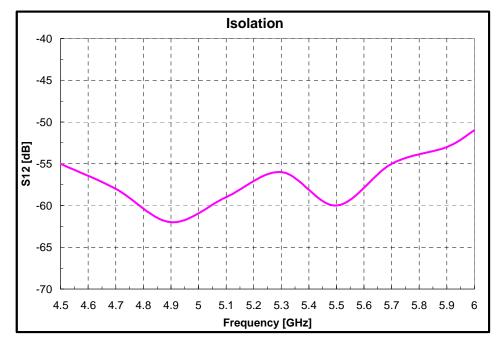

Note:


- 1. $T_B MMIC$ base temperature
- 2. Measured at output 1dB compression point
- 3. Operating current should be in between Idq and Idsat

Test fixture data

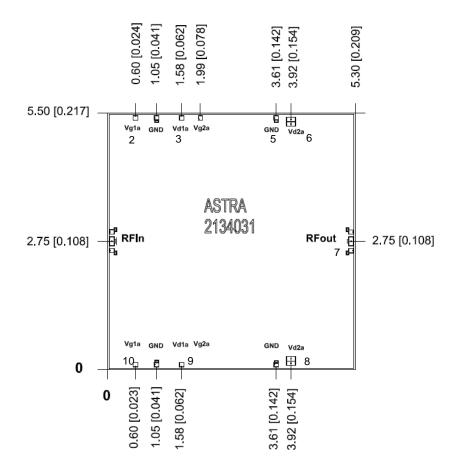
 $V_{d1} = V_{d2} = 9V$, $V_{g1} = V_{g2} = -0.9V$, Total Current =2.9A, $T_A = 25$ °C




Phone: +91-40-30618000 Fax: +91-40-23378944 Page 3 of 6 Email: info@astramwp.com URL: www.astramtl.com

Test fixture data

 $V_{d1} = V_{d2} = 9V$, $V_{g1} = V_{g2} = -0.9V$, Total Current =2.9A, $T_A = 25$ °C



Fax: +91-40-23378944 Page 4 of 6

Email: info@astramwp.com URL: www.astramtl.com

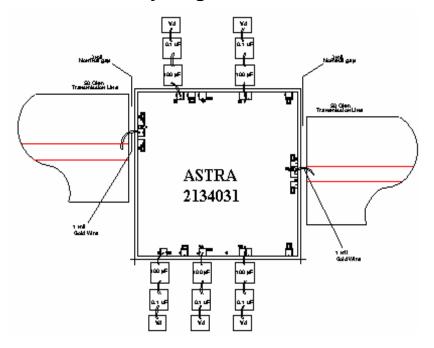
Bond Pad Locations

Units: millimeters (inches)

Note:

1. All RF and DC bond pads are 100µm x 100µm

2. Pad no. 1 : RF IN


3. Pad no. 3 : 1st stage drain voltage(V_{d1})

4. Pad no. 7 : RF Output

5. Pad no. 5,9: 2nd stage drain voltage(V_{d2})
6. Pad no. 10: 2nd stage gate voltage(V_{g2})
7. Pad no. 11: 1st stage gate voltage (V_{q1})

Recommended Assembly Diagram

Note:

- 1. Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input and output.
- 2. Two 1 mil (0.0254mm) bond wires of minimum length should be used from chip bond pad to 100pF capacitor.
- 3. Input and output 50 ohm lines are on 5 mil RT Duroid substrate
- 0.1 µF capacitors may be additionally used as a second level of bypass for reliable operation
- 5. The RF input & output ports are DC decoupled on-chip.
- 6. Proper heat sink like Copper tungsten or copper molybdenum to be used for better reliability of chip

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of $150 - 200 \mu m$ length of wedge bonds is advised. Single Ball bonds of $250-300 \mu m$ though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice