

9.0 – 10.5 GHz Medium Power Amplifier

Features

- ◆ Frequency Range: 9 10.5GHz
- ◆ 20 dBm output P1dB
- ◆ 28 dB Power gain
- ◆ 30% PAE
- High IP3
- ◆ Input Return Loss > 10 dB
- ◆ Output Return Loss > 15 dB
- Dual bias operation
- No external matching required
- DC decoupled input and output
- ◆ 0.5 µm InGaAs pHEMT Technology
- ◆ Chip dimension: 2 x 1 x 0.1 mm

Typical Applications

- RADAR
- Military & space
- LMDS, VSAT

Description

The AMT2143021 is a X-band medium power amplifier with 20dBm power output. The PA uses 3 stages of amplification and operates in 9 – 10.5 GHz frequency range. The PA features 11 dB of gain with input and output return losses of 10 dB and 15 dB respectively. The PA has a high IP3 of 30dBm and greater than 30% PAE. This feature enables it to be used in the applications requiring efficiency along with linearity. The chip operates with dual bias supply voltage. The die is fabricated using a reliable 0.5µm InGaAs pHEMT technology. The Circuit grounds are provided through vias to the backside metallization.

Absolute Maximum Ratings (1)

Parameter	Absolute Maximum	Units
Drain bias voltage (Vd)	+9	volts
Drain current (Idq)	150	mA
RF input power (RFin at Vd=5V)	12	dBm
Operating temperature	-50 to +85	°C
Storage Temperature	-65 to +150	°C

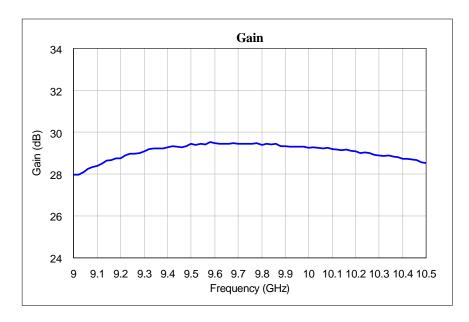
1. Operation beyond these limits may cause permanent damage to the component

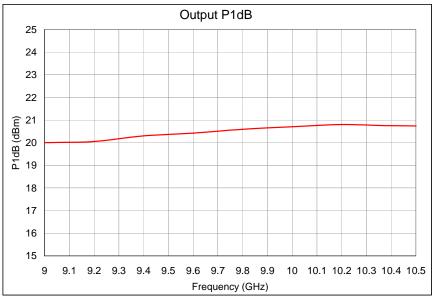
Data Sheet Rev. 1.0 January 2009

Electrical Specifications $^{(1)}$ @ T_A = 25 $^{\circ}$ C, V_{d1} = V_{d2} = V_{d3} = 8V, V_{g1} = V_{g2} = V_{g3} = -0.9V Z_o = 50 Ω

Parameter	Тур.	Units
Frequency Range	9 – 10.5	GHz
Gain	28	dB
Gain Flatness	+/-0.6	dB
Output Power (P1 dB)	20	dBm
Input Return Loss	10	dB
Output Return Loss	15	dB
Saturated output power (Psat)	21	dBm
Output Third Order Intercept (IP3)	30	dBm
Power Added Efficiency (PAE)	30%	
Supply Current(Idq)	80	mA

Note:

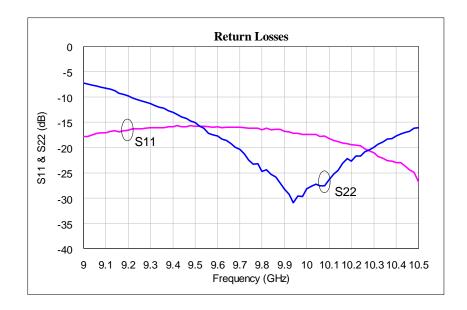

1. Electrical specifications as measured in test fixture.

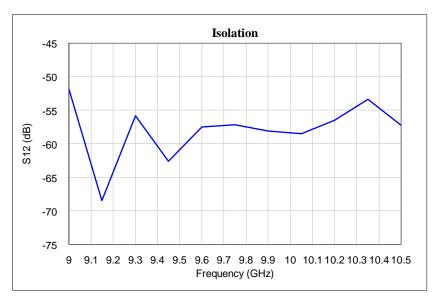


Data Sheet Rev. 1.0 January 2009

Test fixture data

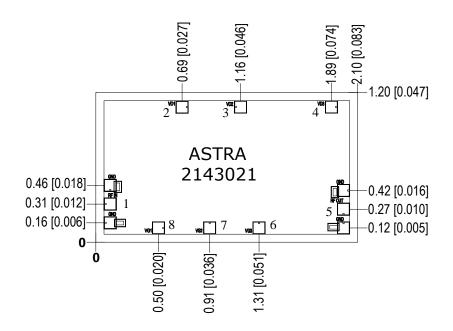
$$V_{d1} = V_{d2} = V_{d3} = 8V$$
, $V_{g1} = V_{g2} = V_{g3} = -0.9V$, Total Current =80ma, $T_A = 25$ °C


Phone: +91-40-30618000 Fax: +91-40-23378944 Page 3 of 6 Email: <u>info@astramwp.com</u>
URL: <u>www.astramtl.com</u>


Rev. 1.0 January 2009

Test fixture data

$V_{d1} = V_{d2} = V_{d3} = 8V$, $V_{g1} = V_{g2} = V_{g3} = -0.9V$, Total Current =80ma, $T_A = 25$ °C



Phone: +91-40-30618000 Fax: +91-40-23378944 Page 4 of 6 Email: info@astramwp.com URL: www.astramtl.com

Rev. 1.0 January 2009

Mechanical Characteristics

Units: millimeters (inches)

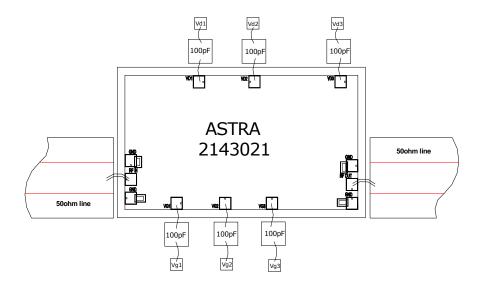
Note:

1. All RF and DC bond pads are 100µm x 100µm

2. Pad no. 1 : RF IN

3. Pad no. 2 : 1^{st} stage drain voltage(V_{d1})
4. Pad no. 3 : 2^{nd} stage drain voltage(V_{d2})

5. Pad no. 4 : 3^{rd} stage drain voltage(V_{d2})


6. Pad no. 5 : RF OUT

Email: info@astramwp.com URL: www.astramtl.com

Rev. 1.0 January 2009

Recommended Assembly Diagram

Note:

- 1. Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input and output.
- 2. Two 1 mil (0.0254mm) bond wires of minimum length should be used from chip bond pad to 100pF capacitor.
- 3. Input and output 50 ohm lines are on 5 mil RT Duroid substrate
- 0.1 µF capacitors may be additionally used as a second level of bypass for reliable operation
- 5. The RF input & output ports are DC decoupled on-chip.

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of $150 - 200 \mu m$ length of wedge bonds is advised. Single Ball bonds of $250-300 \mu m$ though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice