
7.3 – 9.6 GHz 4 Watt Power Amplifier

Features

- ◆ Frequency Range: 7.3 9.5GHz
- 36 dBm output P1dB
- ◆ 8 dB Power gain
- ◆ 28% PAE
- High IP3
- Input Return Loss > 8 dB
- Output Return Loss > 10 dB
- Dual bias operation
- No external matching required
- DC decoupled input and output
- ◆ 0.5 µm InGaAs pHEMT Technology
- ◆ Chip dimension: 2.5 x 2.8 x 0.1 mm

Vd

Functional Diagram

Typical Applications

- RADAR
- Military & space
- LMDS, VSAT

Description

The AMT2144031 is a X-band power amplifier with 36dBm power output. The PA operates in 7.3 – 9.6 GHz frequency range. The PA features 8 dB of gain with input and output return losses of 8 dB and 10 dB respectively. The PA has a high IP3 of 44dBm and 28% PAE. This feature enables it to be used in the applications requiring efficiency along with linearity. The chip operates with dual bias supply voltage. The die is fabricated using a reliable 0.5µm InGaAs pHEMT technology. The Circuit grounds are provided through vias to the backside metallization.

Absolute Maximum Ratings (1)

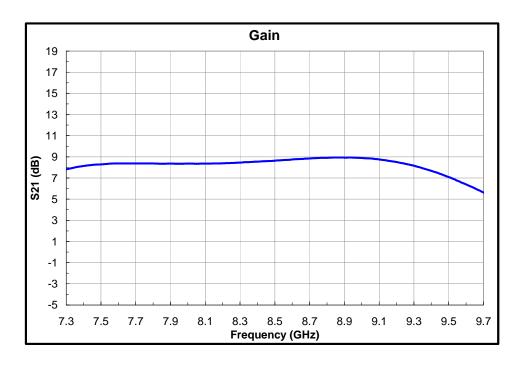
Parameter	Absolute Maximum	Units
Drain bias voltage (Vd)	+10	volts
Drain current (Id)	1.6	А
RF input power (RFin at Vd=9V)	35	dBm
Operating temperature	-50 to +85	°C
Storage Temperature	-65 to +150	°C

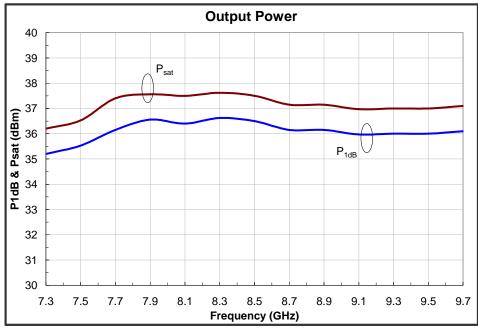
1. Operation beyond these limits may cause permanent damage to the component

Electrical Specifications $^{(1)}$ @ T_B = 40 $^{\circ}$ C, V_d =8V, V_g =-0.9V, Z_o =50 Ω

Parameter	Min.	Тур.	Max.	Units
Frequency	7.3		9.6	GHz
Small Signal Gain	-	8	-	dB
Gain Flatness	-	± 0.5	-	dB
Input Return Loss	-	8	-	dB
Output Return Loss	-	10	-	dB
Output 1dB Compression Point (P1dB)	-	+36	-	dBm
Output 3 rd Order intercept Point (IIP3) ¹	-	44	-	dBm
PAE ²	-	28	-	%
Drain Bias Voltage (Vd)	-	+8	+9	V
Gate Bias Voltage (Vg)	-1.0	-0.9	-0.8	V
Supply Current (Idq)	-	1.3	-	A
Supply Current (Idsat)		1.6		A

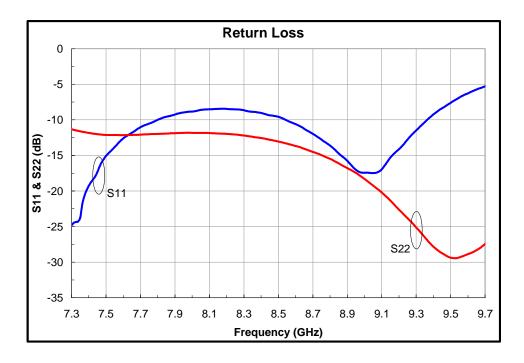
Note:

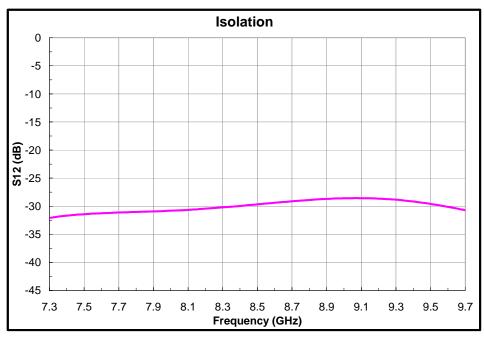

- 1. $T_B MMIC$ base temperature
- 2. Measured at output 1dB compression point
- 3. Operaing current should be present in between Idq and Idsat.


Phone: +91-40-30618000 Fax: +91-40-23378944 Page 2 of 6 Email: info@astramwp.com URL: www.astramtl.com

Test fixture data

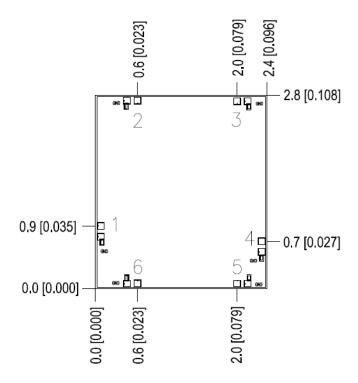
 $T_B=40^{\circ}C$, $Z_0 = 50\Omega$, Vd = 8V, Idq = 1.3A





Test fixture data

 $T_B=40^{\circ}C$, $Z_0 = 50\Omega$, Vd = 8V, Idq = 1.3A



Phone: +91-40-30618000 Fax: +91-40-23378944 Page 4 of 6 Email: info@astramwp.com URL: www.astramtl.com

Bond Pad Locations

Units: millimeters [Inches]

Phone: +91-40-30618000

Fax: +91-40-23378944

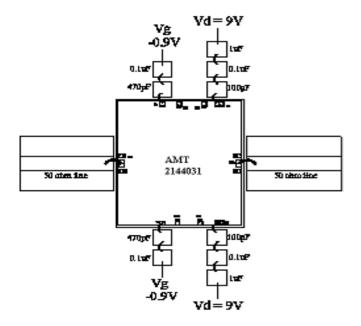
Note:

1. All RF and DC bond pads are 100μm x 100μm

2. Pad no. 1 : RF IN

3. Pad no. 3,5 : Drain voltage(V_d)

4. Pad no. 4 : RF Output


5. Pad no. 2,6 : Gate voltage (V_g)

Note: All RF and DC bond pads are 100µm x 100µm unless specified

Email: info@astramwp.com URL: www.astramtl.com

Recommended Assembly Diagram

Note:

- 1. Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input and output.
- 2. Two 1 mil (0.0254mm) bond wires of minimum length should be used from chip bond pad to 100pF capacitor.
- 3. Input and output 50 ohm lines are on 5 mil RT Duroid substrate
- 0.1 µF capacitors may be additionally used as a second level of bypass for reliable operation
- 5. The RF input & output ports are DC decoupled on-chip.
- 6. Proper heat sink like Copper tungsten or copper molybdenum to be used for better reliability of chip

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of $150 - 200 \mu m$ length of wedge bonds is advised. Single Ball bonds of $250-300 \mu m$ though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice