
Data Sheet Rev. 1.0 November 2010

8 – 10 GHz 4 Watt Power Amplifier

Features

- ◆ Frequency Range: 8 10GHz
- 36.5 dBm Psat
- ◆ 14 dB Power gain
- ◆ 25% PAE
- + High IP3
- Input Return Loss > 9 dB
- ◆ Output Return Loss > 9 dB
- Dual bias operation
- DC decoupled input and output
- ◆ 0.5 µm InGaAs pHEMT Technology
- Chip dimension: 5.3 x 2.8 x 0.1 mm

Functional Diagram

Typical Applications

- + RADAR
- Military & space
- LMDS, VSAT

Description

The AMT2144091 is a X-band Power amplifier with 36.5dBm power output. The PA uses 2 stages of amplification and operates in 8 – 10 GHz frequency range. The PA features 14 dB of gain with input and output return losses of 9 dB respectively. The PA has a high IP3 of 45dBm and 25% PAE. This feature enables it to be used in the applications requiring efficiency along with linearity. The chip operates with dual bias supply voltage. The die is fabricated using a reliable 0.5µm InGaAs pHEMT technology. The Circuit grounds are provided through vias to the backside metallization.

Absolute Maximum Ratings (1)

Parameter	Absolute Maximum	Units
Drain bias voltage (Vd)	+10	volts
Drain current (Id)	2.3	А
RF input power (RFin at Vd=9V)	33	dBm
Operating temperature	-50 to +85	°C
Storage Temperature	-65 to +150	°C

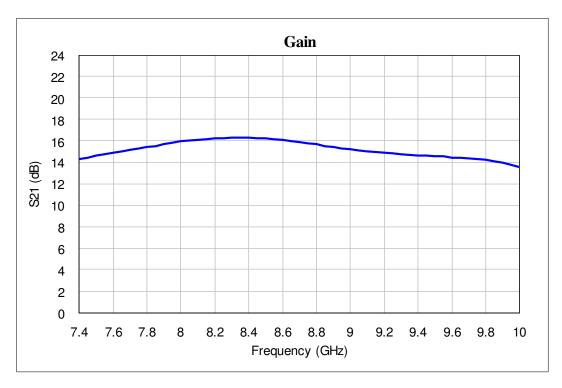
1. Operation beyond these limits may cause permanent damage to the component

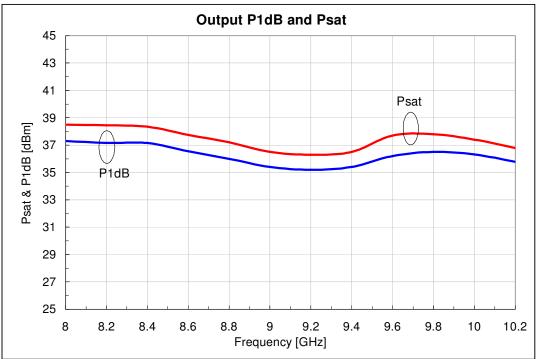
Rev. 1.0 November 2010

Electrical Specifications $^{(1)}$ @ T_A = 25 °C, V_{d1} = V_{d2} = 8V, V_{g1} = V_{g2} = -1.1V Z_o =50 Ω

Parameter	Тур.	Units
Frequency Range	8 – 10	GHz
Gain	14	dB
Gain Flatness	+/-1	dB
Output Power (P1 dB)	35.5	dBm
Input Return Loss	9	dB
Output Return Loss	9	dB
Saturated output power (Psat)	36.5	dBm
Output Third Order Intercept (IP3)	45	dBm
Power Added Efficiency (PAE)	25%	
Supply Current(I _{dq})	1.5	А
Supply Current(I _{dsat} ²)	2.1	А

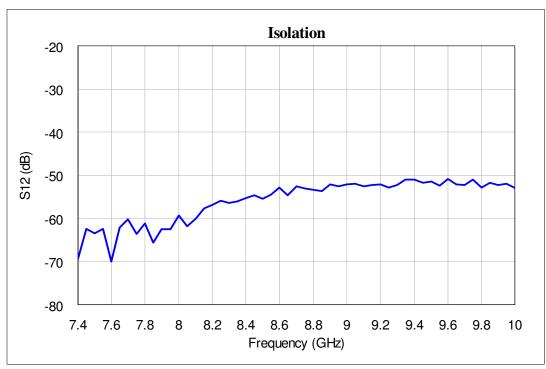
Note:


- 1. Electrical specifications as measured in test fixture.
- 2. I_{dsat} is the maximum drain current under input RF drive condition.

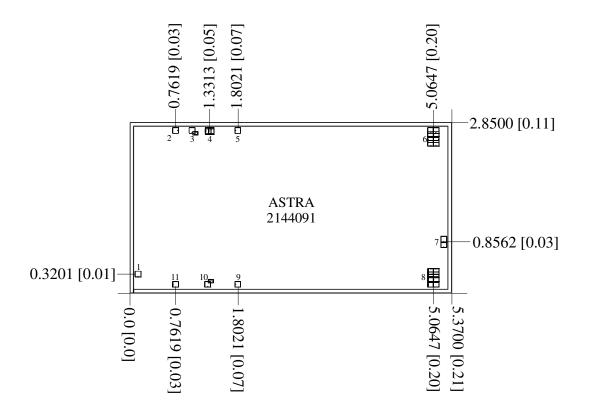

Rev. 1.0 November 2010

Test fixture data

 $V_{d1}=V_{d2}=8V,\ V_{g1}=V_{g2}=-1.1V,\ Total\ Current\ (Idq)=1.5A,\ T_A=25\ ^{\circ}C$



Test fixture data


$$V_{d1} = V_{d2} = 8V$$
, $V_{g1} = V_{g2} = -1.1V$, Total Current (ldq) = 1.5A, $T_A = 25$ °C

Bond Pad Locations

Units: millimeters (inches)

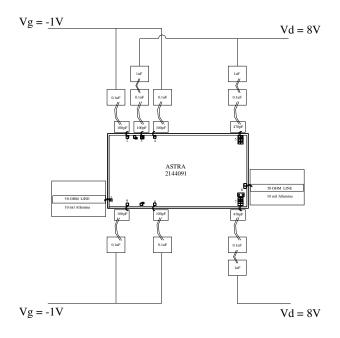
Note:

1. All RF and DC bond pads are 100μm x 100μm

2. Pad no. 1 : RF IN

3. Pad no. 2,11 : 1st stage gate $voltage(V_{g1})$

4. Pad no. 7 : RF Output


5. Pad no. 4 : 1^{st} stage drain voltage(V_{d1})
6. Pad no. 5,9 : 2^{nd} stage gate voltage(V_{g2})
7. Pad no. 6,8 : 2^{nd} stage drain voltage (V_{d2})

8. All the dimensions shown above are measured taking bottom left corner as reference.

Rev. 1.0 November 2010

Recommended Assembly Diagram

Note:

- 1. Open stub of 4mm length, 0.7mm width and 0.1mm thickness to be placed at output immediate to the chip for proper matching.
- 2. Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input and output.
- 3. Two 1 mil (0.0254mm) bond wires of minimum length should be used from chip bond pad to 100pF capacitor.
- 4. Input and output 50 ohm lines are on 10 mil Allumina or 5 mil RT Duroid.
- 5. 100pF,0.1uF and 1uF bypass capacitors are used as shown above.
- 6. The RF input & output ports are DC decoupled on-chip.

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of 150 - 200μm length of wedge bonds is advised. Single Ball bonds of 250-300μm though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice