

11 - 15 GHz 0.5 Watt Power Amplifier

Features

- ◆ Frequency Range: 11 15GHz
- ◆ 27.5 dBm output Psat
- ◆ 13 dB Power gain
- ◆ 25% PAE
- High IP3
- ◆ Input Return Loss > 11 dB
- ◆ Output Return Loss > 6 dB
- Dual bias operation
- No external matching required
- DC decoupled input and output
- ◆ 0.15 µm InGaAs pHEMT Technology
- Chip dimension: 2.4 x 1.7 x 0.1 mm

Functional Diagram

Typical Applications

- RADAR
- Military & space
- + LMDS, VSAT

Description

The AMT2153021 is a Ku-band Power amplifier with 0.5 watt power output. The PA uses 2 stages of amplification and operates in 11 - 15 GHz frequency range. The PA features 13 dB of gain with input and output return losses of 11 dB and 6 dB respectively. The PA has a high IP3 of 36dBm and 25% PAE. The chip operates with dual bias supply voltage. The die is fabricated using a reliable 0.15µm InGaAs pHEMT technology. The Circuit grounds are provided through vias to the backside metallization.

Absolute Maximum Ratings (1)

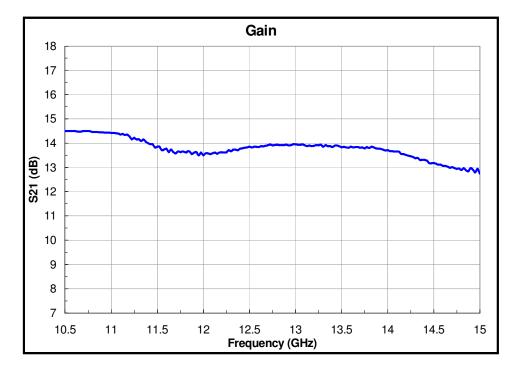
Parameter	Absolute Maximum	Units
Drain bias voltage (Vd)	+6	volts
Drain current (Idq)	500	mA
RF input power (RFin at Vd=9V)	23	dBm
Operating temperature	-50 to +85	°C
Storage Temperature	-65 to +150	°C

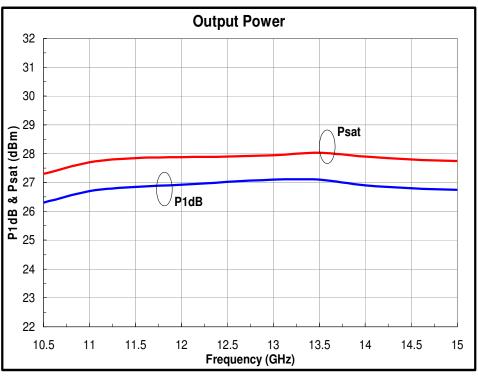
1. Operation beyond these limits may cause permanent damage to the component

Electrical Specifications $^{(1)}$ @ T_A = 25 $^{\circ}$ C, V_{d1} = V_{d2} = 5V, V_{g1} = V_{g2} = -0.65V Z_o =50 Ω

Parameter	Тур.	Units
Frequency Range	11 - 15	GHz
Gain	13	dB
Gain Flatness	+/-0.6	dB
Output Power (P1 dB)	26.5	dBm
Input Return Loss	11	dB
Output Return Loss	6	dB
Saturated output power (Psat)	27.5	dBm
Output Third Order Intercept (IP3)	36	dBm
Power Added Efficiency (PAE)	25%	
Supply Current (Idq)	300	mA
Saturated current (Id _{sat}) ²	500	mA

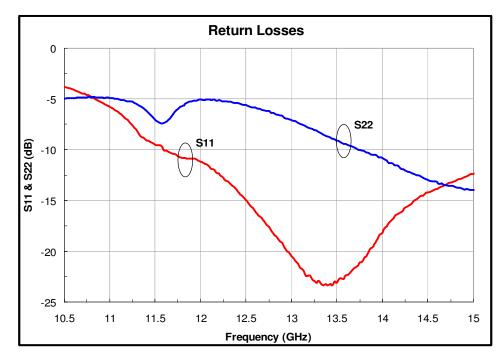
Note:

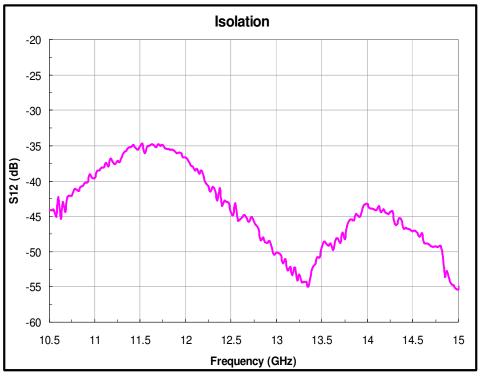

- 1. Electrical specifications as measured in test fixture.
- 2. Operating current is between Idq and Id_{sat}.


Phone: +91-40-30618000 Fax: +91-40-23378944 Page 2 of 6 Email: info@astramwp.com URL: www.astramtl.com

Test fixture data

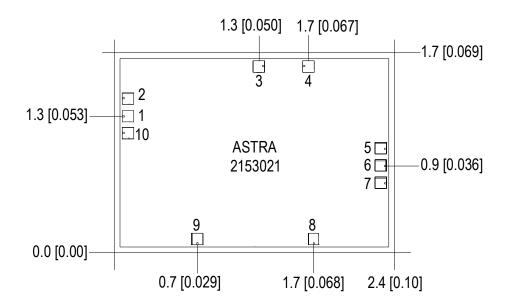
 $V_{d1} = V_{d2} = 5V$, $V_{g1} = V_{g2} = -0.65V$, Total Current (Idq) =300mA, $T_A = 25$ °C




Phone: +91-40-30618000 Fax: +91-40-23378944 Page 3 of 6 Email: info@astramwp.com URL: www.astramtl.com

Test fixture data

 $V_{d1} = V_{d2} = 5V$, $V_{g1} = V_{g2} = -0.65V$, Total Current (Idq) =300mA, $T_A = 25$ °C



Astra Microwave Products Limited, Hyderabad, INDIA

Bond Pad Locations

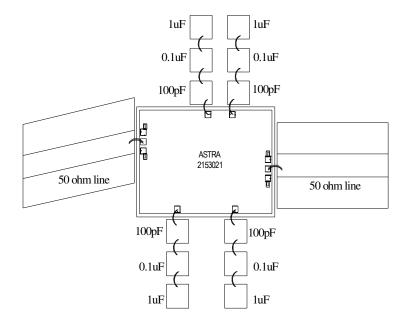
Units: millimeters (inches)

Note:

1. All RF and DC bond pads are 100μm x 100μm

2. Pad no. 1 : RF IN

3. Pad no. 3 : 1st stage drain voltage(V_{d1})


4. Pad no. 6 : RF Out

5. Pad no. 4 : 2nd stage drain voltage(V_{d2})
6. Pad no. 8 : 2^{nd} stage gate voltage(V_{g2})
7. Pad no. 9 : 1^{st} stage gate voltage (V_{g1})

Phone: +91-40-30618000 Fax: +91-40-23378944 Page 5 of 6 Email: <u>info@astramwp.com</u> URL: <u>www.astramtl.com</u>

Recommended Assembly Diagram

Note:

- 1. Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input and output.
- 2. Two 1 mil (0.0254mm) bond wires of minimum length should be used from chip bond pad to 100pF capacitor.
- 3. Input and output 50 ohm lines are on 5 mil RT Duroid substrate
- 0.1 μF capacitors may be additionally used as a second level of bypass for reliable operation
- 5. The RF input & output ports are DC decoupled on-chip.
- 6. Proper heat sink like Copper tungsten or copper molybdenum to be used for better reliability of chip

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of $150 - 200 \mu m$ length of wedge bonds is advised. Single Ball bonds of $250-300 \mu m$ though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice